Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Infect Chemother ; 29(8): 754-758, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2303161

ABSTRACT

INTRODUCTION: The accuracy of nucleic acid amplification tests (NAATs) is affected by various factors; however, studies examining the factors affecting the accuracy of quantitative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen test (QAT) are limited. METHODS: A total of 347 nasopharyngeal samples were collected from patients with coronavirus disease 2019 (COVID-19), and the date of onset was obtained from the electronic medical records. The SARS-CoV-2 antigen level was measured using Lumipulse Presto SARS-CoV-2 Ag (Presto), while NAAT was performed using the Ampdirect 2019-nCoV Detection Kit. RESULTS: Presto had a sensitivity rate of 95.1% (95% confidence interval: 92.8-97.4) in detecting the SARS-CoV-2 antigen in 347 samples. The number of days from symptom onset to sample collection was negatively correlated with the amount of antigen (r = -0.515) and sensitivity of Presto (r = -0.711). The patients' age was lower in the Presto-negative samples (median age, 39 years) compared with that in the Presto-positive samples (median age, 53 years; p < 0.01). A significant positive correlation was observed between age (excluding teenagers) and Presto sensitivity (r = 0.764). Meanwhile, no association was found between the mutant strain, sex, and Presto results. CONCLUSION: Presto is useful for the accurate diagnosis of COVID-19 owing to its high sensitivity when the number of days from symptom onset to sample collection is within 12 days. Furthermore, age may affect the results of Presto, and this tool has a relatively low sensitivity in younger patients.


Subject(s)
COVID-19 , Adolescent , Humans , Adult , Middle Aged , COVID-19/diagnosis , SARS-CoV-2/genetics , Sensitivity and Specificity , COVID-19 Testing , Antigens, Viral
2.
J Clin Virol Plus ; 2(4): 100109, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2273286

ABSTRACT

The Omicron emerged in November 2021 and became the predominant SARS-CoV-2 variant globally. It spreads more rapidly than ancestral lineages and its rapid detection is critical for the prevention of disease outbreaks. Antigen tests such as immunochromatographic assay (ICA) and chemiluminescent enzyme immunoassay (CLEIA) yield results more quickly than standard polymerase chain reaction (PCR). However, their utility for the detection of the Omicron variant remains unclear. We herein evaluated the performance of ICA and CLEIA in saliva from 51 patients with Omicron and 60 PCR negative individuals. The sensitivity and specificity of CLEIA were 98.0% (95%CI: 89.6-100.0%) and 100.0% (95%CI: 94.0-100.0%), respectively, with fine correlation with cycle threshold (Ct) values. The sensitivity and specificity of ICA were 58.8% (95%CI: 44.2-72.4%) and 100.0% (95%CI: 94.0-100.0%), respectively. The sensitivity of ICA was 100.0% (95%CI: 80.5-100.0%) when PCR Ct was less than 25. The Omicron can be efficiently detected in saliva by CLEIA. ICA also detects high viral load Omicron using saliva.

3.
J Infect Chemother ; 27(7): 1039-1042, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1164052

ABSTRACT

INTRODUCTION: The pandemic of a novel coronavirus disease 2019 (COVID-19) caused by a severe acute respiratory coronavirus 2 (SARS-CoV-2) infection has been problematic worldwide. A new SARS-CoV-2 antigen test (LUMIPULSEⓇ) was licensed and widely used in Japan since May 2020. We conducted this study intending to whether the automated quantitative CLEIA antigen test using a saliva sample is effective and valid for the diagnosis of COVID-19. PATIENTS AND METHODS: We analyzed and compared the diagnostic accuracy of both the automated quantitative CLEIA antigen test and real-time RT-PCR (rRT-PCR) using a saliva sample from individuals suspected as having COVID-19. RESULTS: A total of 305 samples were collected and tested in Aichi Medical University Hospital and affiliated facilities from December 2020 until January 2021 at our institute. Using reverse-transcription PCR as a reference, the AUROC of the automated quantitative CLEIA antigen test was 0.903 (95% confidential interval 0.845-0.962, p < 0.001). The appropriate cut-off antigen level was 4.0 pg/mL and had a sensitivity of 77.8%, a specificity of 99.6%, a positive predictive value of 98%, and a negative predictive value of 94.5%. On the other hand, the diagnostic accuracy of the antigen test decreased among patients among patients with COVID-19 with threshold cycle (Ct-value)≥27, which shows the AUROC was 0.795 (95%CI 0.687-0.907, p < 0.001). CONCLUSION: While the automated quantitative CLEIA antigen test from saliva specimen could be one of the most useful diagnostic tests for the diagnosis of COVID-19 in general practice, clinicians should know the limitations of the antigen test.


Subject(s)
COVID-19 , Saliva , Humans , Immunoenzyme Techniques , Japan , SARS-CoV-2 , Sensitivity and Specificity
4.
Front Microbiol ; 11: 628281, 2020.
Article in English | MEDLINE | ID: covidwho-1058428

ABSTRACT

OBJECTIVES: Serological tests for COVID-19 have been instrumental in studying the epidemiology of the disease. However, the performance of the currently available tests is plagued by the problem of variability. We have developed a high-throughput serological test capable of simultaneously detecting total immunoglobulins (Ig) and immunoglobulin G (IgG) against nucleocapsid protein (NP) and spike protein (SP) and report its performance in detecting COVID-19 in clinical samples. METHODS: We designed and prepared reagents for measuring NP-IgG, NP-Total Ig, SP-IgG, and SP-Total Ig (using N-terminally truncated NP (ΔN-NP) or receptor-binding domain (RBD) antigen) dedicated automated chemiluminescent enzyme immunoassay analyzer AIA-CL1200. After determining the basal thresholds based on 17 sera obtained from confirmed COVID-19 patients and 600 negative sera, the clinical validity of the assay was evaluated using independent 202 positive samples and 1,000 negative samples from healthy donors. RESULTS: All of the four test parameters showed 100% specificity individually (1,000/1,000; 95%CI, 99.63-100). The sensitivity of the assay increased proportionally to the elapsed time from symptoms onset, and all the tests achieved 100% sensitivity (153/153; 95%CI, 97.63-100) after 13 days from symptoms onset. NP-Total Ig was the earliest to attain maximal sensitivity among the other antibodies tested. CONCLUSION: Our newly developed serological testing exhibited 100% sensitivity and specificity after 13 days from symptoms onset. Hence, it could be used as a reliable method for accurate detection of COVID-19 patients and to evaluate seroprevalence and possibly for surrogate assessment of herd immunity.

5.
J Infect Chemother ; 27(4): 613-616, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-956008

ABSTRACT

BACKGROUND: Expansion of the testing capacity for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important issue to mitigate the pandemic of coronavirus disease-2019 (COVID-19) caused by this virus. Recently, a sensitive quantitative antigen test (SQT), Lumipulse® SARS-CoV-2 Ag, was developed. It is a fully automated chemiluminescent enzyme immunoassay system for SARS-CoV-2. METHODS: In this study, the analytical performance of SQT was examined using clinical specimens from nasopharyngeal swabs using reverse transcription polymerase chain reaction (RT-PCR) as a control. RESULTS: Receiver operating characteristic analysis of 24 SARS-CoV-2-positive and 524 -negative patients showed an area under the curve of 0.957 ± 0.063. Using a cut-off value of 1.34 pg/ml, the sensitivity was 91.7%, the specificity was 98.5%, and the overall rate of agreement was 98.2%. In the distribution of negative cases, the 99.5 percentile value was 1.03 pg/ml. There was a high correlation between the viral load calculated using the cycle threshold value of RT-PCR and the concentration of antigen. The tendency for the antigen concentration to decrease with time after disease onset correlated with that of the viral load. CONCLUSIONS: Presented results indicate that SQT is highly concordant with RT-PCR and should be useful for the diagnosis of COVID-19 in any clinical setting. Therefore, this fully automated kit will contribute to the expansion of the testing capability for SARS-CoV-2.


Subject(s)
Antigens, Viral/analysis , COVID-19/diagnosis , Nasopharynx/virology , SARS-CoV-2/immunology , Viral Load , COVID-19/virology , Humans , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL